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Why resummation?

• Fixed order perturbation theory 
problematic for problems with widely 
separated scales Q1 >> Q2.

• Large logarithms αsn Logn(Q1/Q2) and               
αsn Log2n(Q1/Q2).

• Scale in coupling? αs(Q1) or αs(Q2)?

• Solution to both problems: integrate out 
physics at Q1, solve RG, evolve to lower scale Q2.

• Effective theories

Sudakov logarithms



Resummation for collider processes

• An old problem! In the past 20 years 
resummations were performed for many 
processes with scale hierarchies

• DIS for x→1, Drell-Yan and Higgs production for 
Q2/s →1, for QT2/Q2 →0.

• e+e- event shapes, hadronic event shapes, ... 
• ...
• LL for arbitrary observable with parton shower

• Resummation is traditionally performed  
with diagrammatic methods.

• No clear scale separation.



Bill Bardeen, in April: 
“So why don’t you use your effective theory 
to do these resummations?” 



Bill Bardeen, yesterday: 
“Hadronic showers. Isn’t it all Soft-Collinear 
Effective Theory?” 



Soft-collinear effective theory

• Eff. theory to analyze processes 
involving large momentum transfers 
and small invariant masses 

• Originally developed to analyze B-
meson decays to light hadrons
• B→ππ,  B→Xu lν, ...

collinear collinear

soft
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Work in             progress 
• So far, we have analyzed only simplest 

process, DIS for x→1 (as well as inclusive 
B-decays)

• High precision: Next-to-next-to-next-to-leading 
logarithmic accuracy (N3LL) 

• Detailed comparison with standard approach

• Drell-Yan process and Higgs production for Q2/s 
→1 underway. (See also Idilbi, Ji and Yuan, hep-ph/
0605068.)

• Bauer and Schwartz: interesting proposal to 
improve parton showers with eff. theory

• Not yet implemented, tested only at LL accuracy.



Outline

• DIS in the end-point region

• Factorization analysis

• Resummation

• Traditional method

• Using RG-evolution in SCET

• Numerical results



Kinematics of DIS

• Are interested in the limit x→1, more 
precisely

Q2
= −q2

x =
Q2

2p · q

Xpµ

qµ

Q2
! Q2(1 − x) ! Λ2

QCD

≈ M
2

X

e−(k) + N(p) → e−(k′) + X(P )



Hadronic tensor
• Leptonic part factors off trivially

• Optical theorem. Structure functions F1 and F2
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1
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k0
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(q2)2
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Factorization theorems

• Generic x

• End-point region x→1  (                           ) 

1 Introduction

It is well known that fixed-order perturbation theory is not reliable for quantities involving
several disparate scales. In such cases, higher-order corrections are enhanced by large loga-
rithms of scale ratios. The standard solution to this problem is to split the calculation into a
series of single-scale problems by successively integrating out the physics associated with the
largest remaining scale. Perturbative logarithms are then resummed by renormalization-group
(RG) evolution from the larger scales to the smaller ones. For collider processes, resummation
is traditionally performed by other means, since it was not always clear how to systematically
integrate out the physics associated with high scales in such cases.

The simplest example of a high-energy process with a scale hierarchy which necessitates
resummation is deep-inelastic scattering (DIS) in the threshold region. As the Bjorken scaling
variable x → 1, the invariant mass of the hadronic system produced in the decay, MX =

Q
√

1−x
x (neglecting the nucleon mass), becomes much smaller than the momentum transfer

Q. The presence of the two scales is manifest in the QCD factorization theorem [1, 2, 3]

F ns
2 (x, Q2) = H(Q2, µ) Q2

∫ 1

x

dz

z
J

(
Q2 1 − z

z
, µ

) x

z
φns

q

(x

z
, µ

)
, (1)

for the non-singlet part of the structure function F2(x, Q2). The result (1) is valid in the
threshold region at leading power in M2

X/Q2 ≈ (1 − x) and Λ2
QCD/M2

X . As long as MX $
ΛQCD, both the jet function J(M2

X , µ) and the hard function H(Q2, µ) can be evaluated in
perturbation theory, whereas the parton distribution function φns

q (ξ, µ) is a non-perturbative
object. The result for the hard function involves single and (Sudakov) double logarithms of the
form αn

s lnm(Q/µ), with m ≤ 2n, while the integral over the jet function produces logarithms
αn

s lnm(MX/µ). Irrespective of the value of the renormalization scale µ, the fixed-order result
contains large logarithms.

Traditionally, the resummation of these logarithms is performed in moment space. The
threshold region of small MX is probed by large-N moments. The relevant scale in Mellin
space is Q/

√
N , so that the large perturbative logarithms depend on the moment parameter

N . In [1, 2] it was shown that these logarithms can be absorbed into a resummation exponent
GN , defined by integrals over two radiation functions Aq(αs) and Bq(αs),

GN (Q2, µ) =
∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)Q2

µ2

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)]

. (2)

The functions Aq and Bq are determined by matching with results from fixed-order perturba-
tion theory and are currently known at three-loop order, enabling a nearly complete threshold
resummation to next-to-next-to-next-to-leading logarithmic (N3LL) accuracy [4]. The re-
summed momentum-space structure function F2(x, Q2) is obtained from the moment-space
expression by an inverse Mellin transformation.

This approach to threshold resummation has several drawbacks. The first is related to
integrations over the Landau pole in the running coupling. These occur twice: once in the
integrals over the functions Aq and Bq in the resummation exponent, and once again when
the inverse Mellin transform is taken to obtain results in momentum space. To perform the

1
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Measurements of F2

16. Structure functions 1

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 16.6: The proton structure function F p
2 measured in electromagnetic scattering of positrons on

protons (collider experiments ZEUS and H1), in the kinematic domain of the HERA data, for x > 0.00006
(cf. Fig. 16.9 for data at smaller x and Q2), and for electrons (SLAC) and muons (BCDMS, E665, NMC)
on a fixed target. Statistical and systematic errors added in quadrature are shown. The data are plotted
as a function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity. The ZEUS
binning in x is used in this plot; all other data are rebinned to the x values of the ZEUS data. For the
purpose of plotting, F p

2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from
ix = 1 (x = 0.85) to ix = 28 (x = 0.000063). References: H1—C. Adloff et al., Eur. Phys. J. C21, 33 (2001);
C. Adloff et al., Eur. Phys. J. (accepted for publication) hep-ex/0304003; ZEUS—S. Chekanov et al., Eur.
Phys. J. C21, 443 (2001); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given in [54])
; E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys. B483, 3
(97); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).
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Figure 16.7: The deuteron structure function F d
2 measured in electromagnetic scattering of electrons

(SLAC) and muons (BCDMS, E665, NMC) on a fixed target, shown as a function of Q2 for bins of fixed
x. Statistical and systematic errors added in quadrature are shown. For the purpose of plotting, F p

2 has
been multiplied by 2ix , where ix is the number of the x bin, ranging from 1 (x = 0.85) to 29 (x = 0.0009).
References: BCDMS—A.C. Benvenuti et al., Phys. Lett. B237, 592 (1990). E665, NMC, SLAC—same
references as Fig. 16.6.

Note: all measurements have x ≤ 0.85.



Factorization analysis
310 7418240490 0437213507 5003588856 7930037346 0228427275 4572016194 

8823206440 5180815045 5634682967 1723286782 4379162728 3803341547 
1073108501 9195485290 0733772482 2783525742 3864540146 9173660247 

7652346609
=

1634733 6458092538 4844313388 3865090859 8417836700 3309231218 1110852389 
3331001045 0815121211 8167511579

x
1900871 2816648221 1312685157 3935413975 4718967899 6851549366 6638539088 

0271038021 0449895719 1261465571



Factorization analysis in SCET
1. Start with QCD correlation function which 

describes process under consideration.
2. Identify relevant momentum regions for 

its expansion around Q2 → ∞
3. Introduce corresponding effective theory 

fields. Derive Lagrangian.
4. Identify operator basis

1. Matching coefficients: partonic hard 
scattering amplitudes

2. Matrix elements:  PDFs



Analysis is technical. Wear lab coat for protection!

© Callie Lipkin



Earlier work in SCET (w/o lab coats)

• Previous analyses found:
☹ Different number of momentum 

regions in different frames.
☹ Non-factorization as x → 1. 
☹ Factorization, but additional soft 

contributions which are not part of the 
PDF.

☹ Ignore perturbative non-factorization 
→ Non-perturbative factorization due 
to confinement.



Correlator (whale) diagrams

• Now expand around limit 

pµ pµ

qµ qµ

Jµ Jµ

JN J
†
N

Q2
! Q2(1 − x) ! p2



Momentum regions
• Light-cone components                         in Breit frame:

The DIS cross section is 

h(p) + : (k )  -o :(/, ,) + X(p + / , - / ' 9 ,  (3.1) 

~ '  = (0, q - , 0 r ) .  

with g a lepton and h a hadron. As in the DY case, consider a specific contribution 

to (3.1) with n hadrons in the final state. The phase space for this process differs 

f rom ordinary n + 1 particle phase space only by the presence of a delta function 

which fixes the momentum transfer q 2=  _ Q2=  ( k -  k ' )  2 from the lepton to the 

hadronic system. In a frame where p is lightlike and in the + z direction, this delta 

function is 

,[Q,÷(?- 

where the k, # are the momenta of the final state hadrons. This is a different 

condition than that given by eq. (2.3) for the DY cross section, and so factorization 

in the DIS case will require a different choice of parton densities to factorize x ~ 1 

singularities, and hence high-moment behavior. 

To understand how best to factorize the DIS cross section in the limit x ---, 1, we 

need to know those momentum configurations which give leading contributions in 

that limit [8,12]. These are shown in fig. 3.1. We work in a frame where p~ is in the 

+ z direction, and in which qT = 0. The subdiagrams L contain virtual lines whose 

momenta  are nearly parallel to p",  and which have plus components of order p÷; in 

S, the lines are all soft, i.e., have all momentum components much smaller than p ÷; 

in H all lines are hard, i.e., have all momentum components of order p÷; finally, in 

J all lines are nearly collinear to the vector 

P 

In the limit x ~ 1, M 2= (p  + q)2 vanishes as 1 -  x, and the final state consists 

G. Sterman / Hadromc cross sectwns 323 

Fig. 3 1. Leading reoons for DIS. 

hard:

hard-collinear:

anti-collinear:

p
µ
X ∼ Q(ε, 1,

√
ε)

pµ
∼ Q(1, λ2, λ) Q(ε, λ2,

√

ελ)
soft-collinear:

Q(1, 1, 1)

ε = 1 − x

λ ∼ mN/Q ∼ ΛQCD/Q

Sterman ‘87 

k
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= n · k n̄ · k + k
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⊥

(n · k, n̄ · k, k
µ

⊥
)



Example diagram

• Note: given loop in general has contributions 
from several momentum regions.



Effective theory

• Lagrangian
• Two components of collinear quark fields ξhc and ξc are 

integrated out. Derivative expansion of L.

• Current operator

multipole expansion of Lagrangian interactions between soft-collinear and anti-collinear fields
[27]. Therefore, when matching the current operator onto SCET, one must multipole expand
both the anti-collinear and soft-collinear fields about x−.

The two expressions in (13) are invariant under hard-collinear and anti-collinear gauge
transformations, while under a soft-collinear gauge transformation both composite fields,
W †

hcξhc and W †
c̄ ξc̄, transform into Usc(x−) times themselves. Thus, at tree level the gauge-

invariant matching relation for the current is

(ψ̄γµψ)(x) → (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x) . (15)

Only a single Dirac structure is possible for massless quarks. Beyond tree level the matching
relation at leading power gets generalized to (see the analogous discussions in [13, 29])

(ψ̄γµψ)(x) →
∫

dt C̃V (t, n · q, µ) (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x + tn̄)

= CV (−n · q n̄ · P , µ) (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x) . (16)

In the first line we have used that n̄ · ∂ derivatives of hard-collinear fields are unsuppressed
in SCET power counting, allowing for arbitrary displacements of these fields along the n̄
light-cone. In the second line, the object P is the hard-collinear momentum operator, and
the Wilson coefficient CV is the Fourier transform of the position-space Wilson coefficient C̃V

appearing in the first line. In the case at hand, the relevant components −n · q ≈ n̄ · P ≈ Q
are fixed by kinematics (see the relations (7)), and so we may write CV (Q2, µ) for simplicity.

2.2 Matching of the hadronic tensor

The next step in the matching procedure is to evaluate the hadronic tensor in the intermediate
effective theory. Inserting the SCET current (16) into (3), we find the leading-power expression

W µν(p, q) → |CV (Q2, µ)|2 i
∫

d4x eiq·x (17)

× 〈N(p)| T{(ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x)(ξ̄hcWhc)(0) γν
⊥(W †

c̄ ξc̄)(0)} |N(p)〉 .

The interactions of soft-collinear gluons with hard-collinear fields in (12) can be removed by
the field redefinitions [12, 27]

ξhc(x) → Sn(x−) ξ(0)
hc (x) , Aµ

hc(x) → Sn(x−) Aµ(0)
hc (x) S†

n(x−) , (18)

which imply (W †
hcξhc)(x) → Sn(x−) (W (0)†

hc ξ(0)
hc )(x). Here

Sn(x) = P exp
(
ig

∫ 0

−∞
ds n · Asc(x + sn)

)
(19)

is a soft-collinear Wilson line along the n-direction. The redefined hard-collinear fields with
superscripts “(0)” are decoupled from soft-collinear fields and thus interact only among them-
selves. After the field redefinition the hadronic matrix element in (17) factorizes into a vacuum

8

φc̄(x−) + . . .. Integrating out the hard modes by matching onto SCET yields an expression
for the discontinuity of the hadronic tensor of the form

1

π
Im W µν =

∫ 1

x

dξ

x
C(Q2, x/ξ, µ)

∫ dt

2π
e−iξn·p t 〈N(p)| ψ̄(tn)[tn, 0] γµ /n

2
γν ψ(0) |N(p)〉 , (11)

where C = δ(1− x/ξ) +O(αs) is a matching coefficient in the effective theory, and the object
[tn, 0] is a straight Wilson line along the n light-cone. We have used that the SCET Lagrangian
for a single collinear sector is equivalent to the QCD Lagrangian [12] in order to replace the
SCET fields by the usual QCD fields. The identification of the nucleon matrix element with
the QCD parton distribution function is then automatic (see relation (23) below), and one
arrives at the standard factorization formula.

The derivation of the factorization formula for x → 1 is more complicated. It involves a two-
step matching procedure similar to that used for inclusive semi-leptonic and radiative B decays
in the endpoint region [24, 25, 26, 28]. In a first matching step, hard modes are integrated out
by matching QCD onto a version of SCET containing hard-collinear, anti-collinear, and soft-
collinear fields. We will refer to this intermediate effective theory as SCET(hc, c̄, sc) for short.
The matching function associated with this first step is the hard coefficient CV . Because the
sum of a hard-collinear momentum and an anti-collinear momentum has an invariant mass
(phc + pc̄)2 ∼ Q2 and must be counted as hard, the intermediate effective Lagrangian does not
contain vertices coupling the hard-collinear fields to anti-collinear ones. These fields interact
only through the exchange of soft-collinear “messenger” fields. However, the soft-collinear
modes can be decoupled from the hard-collinear ones by means of a field redefinition. After
this decoupling, it is possible to integrate out the hard-collinear scale by matching onto a
low-energy theory SCET(c̄, sc) involving only anti-collinear and soft-collinear modes. The
matching function associated with this step is the jet function J . Having integrated out the
perturbative modes, the final step is to evaluate the matrix element of the remaining operator
defined in the low-energy effective theory. An important part of the factorization analysis is to
show that this matrix element is equivalent to the QCD parton distribution function evaluated
in the limit x → 1, as studied e.g. in [1, 3]. We will show that this is indeed the case, and
that the soft-collinear modes play an important role in this identification.

The appropriate Lagrangian for SCET(hc, c̄, sc) is a generalization of the effective La-
grangian for collinear and soft-collinear fields derived in [27, 29]. It contains hard-collinear
quark and gluon fields ξhc and Ahc, anti-collinear quark and gluon fields ξc̄ and Ac̄, and
soft-collinear quark and gluon fields θsc and Asc. The hard-collinear fields move along the
z-direction, and hence /n ξhc = 0. The anti-collinear and soft-collinear fields move in the
opposite direction, so /̄n ξc̄ = 0 and /̄n θsc = 0. The two collinear sectors can only interact
via soft-collinear exchange, and at leading power only soft-collinear gluons are involved in
these interactions. The corresponding effective Lagrangian at leading order in the expansion
parameters ε and λ is [27, 29]

LSCET(y) = ξ̄hc
/̄n

2
[in · Dhc + gn · Asc(y−)] ξhc − ξ̄hc i /Dhc⊥

/̄n

2

1

in̄ · Dhc
i /Dhc⊥ ξhc

+ ξ̄c̄
/n

2
[in̄ · Dc̄ + gn̄ · Asc(y+)] ξc̄ − ξ̄c̄ i /Dc̄⊥

/n

2

1

in · Dc̄
i /Dc̄⊥ ξc̄

6

+ pure glue terms + soft-collinear Lagrangian , (12)

where all fields without position argument are to be evaluated at the point y. The effective
Lagrangian is invariant under a set of hard-collinear, anti-collinear, and soft-collinear gauge
transformations, whose precise form can be found in [27, 30].

An important property of the SCET Lagrangian is that soft-collinear gluons can be de-
coupled from the hard-collinear and anti-collinear fields through field redefinitions involving
Wilson lines [12, 27]. This decoupling is essential for the factorization analysis below. Di-
agrammatic factorization proofs also rely on the decoupling of “soft” gluons from collinear
fields. The underlying physics is that soft gluons couple to collinear partons through eikonal
vertices, a feature explicit in the SCET Lagrangian (12).

2.1 Matching of the current

The first step in the factorization procedure is to integrate out hard fluctuations by match-
ing QCD onto the intermediate effective theory SCET(hc, c̄, sc). The kinematic restrictions
implied by the limit x → 1 simplify this first matching step. Since we are dealing with the
region of phase space where the final-state jet is hard-collinear, there are no contributions to
the hadronic tensor where the anti-collinear partons at points 0 and x are connected by hard
gluons. It is therefore sufficient to integrate out hard fluctuations at the level of the elec-
tromagnetic current. Time-ordered products of two currents are not needed until the second
step.

We match the QCD current Jµ(x) = (ψ̄γµψ)(x) onto a current in SCET containing a
hard-collinear quark and an anti-collinear anti-quark. The form of the resulting operator is
dictated by gauge invariance. The appropriate matching relations for the QCD fields are

ψhc(x) → (W †
hcξhc)(x) , ψc̄(x) → (W †

c̄ ξc̄)(x−) , (13)

where Whc is the hard-collinear Wilson line

Whc(x) = P exp
(
ig

∫ 0

−∞
ds n̄ · Ahc(x + sn̄)

)
(14)

along the n̄-direction, and Wc̄ is the analogous anti-collinear Wilson line along the n-direction.
The multipole expansion in (13) requires some explanation. In the hadronic tensor (3), the
points 0 and x are connected by a hard-collinear jet propagating through a cloud of soft-
collinear partons. This implies that the position argument x scales as a hard-collinear quantity,
x ∼ (1, ε−1, ε−

1

2 ). It follows that not all components of the anti-collinear and soft-collinear
momenta must be kept in the calculation of Feynman graphs in the effective theory. The minus
and perpendicular components of anti-collinear and soft-collinear momenta are much smaller
than the corresponding components of hard-collinear momenta and so should be expanded
out. On the other hand, the large plus component n · p ∼ Q of the target nucleon is canceled
by the momentum component n · q of the current and turned into a momentum component
of order εQ, which is of the same order as the plus component of a hard-collinear or soft-
collinear momentum. For this reason, it would be incorrect to set x− = 0 in the argument of
the soft-collinear fields entering the effective current operator, even though this is the correct

7



Current matching
• Bare Wilson coefficient CV is on-shell 

QCD form factor.

• eff. theory loop diagrams vanish on shell (because 
they are scaleless).

• UV divergencies in eff. theory are equal 
IR to divergencies in QCD.

3.3 Matching conditions and anomalous dimensions

To evaluate the resummed hard and jet functions at a common factorization scale µ requires
perturbative expressions for the matching functions CV (Q2, µh) and j̃(L, µi). We extract the
hard coefficient at a scale µh ∼ Q in the first matching step, and the associated jet function
at a scale µi ∼ Q

√
1 − x in the second. In this way, the matching functions are free of large

logarithms and can be reliably computed in fixed-order perturbation theory. We also need
perturbative expressions for the anomalous dimensions Γcusp, γV , and γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when the
vector current in full QCD is matched onto an effective current built out of operators in SCET.
To obtain an expression for the Wilson coefficient one must compute, at a given order in αs,
perturbative expressions for the photon vertex function in the two theories. The calculation
is simplified greatly by performing these calculations on-shell, in which case all loop graphs
in the effective theory are scaleless and hence vanish. The bare on-shell vertex function in
QCD (called the on-shell quark form factor) has been studied extensively in the literature.
The form factor is infrared divergent and can be regularized using dimensional regularization.
The bare form factor at two-loop order was calculated long ago [41, 42, 43, 44], and recently
the infrared divergent contributions have even been computed at three-loop order [45]. When
the (vanishing) SCET graphs are subtracted from the QCD result, the infrared poles in 1/ε
get transformed into ultraviolet poles. To obtain the matching coefficient we introduce a
renormalization factor ZV , which absorbs these poles. We then compute

CV (Q2, µ) = lim
ε→0

Z−1
V (ε, Q2, µ) Fbare(ε, Q

2) , (49)

where on the right-hand side we must also eliminate the bare coupling constant in favor of the
renormalized coupling αs(µ). At two-loop order, we find (with L = ln(Q2/µ2) and αs = αs(µ))

CV (Q2, µ) = 1+
CF αs

4π

(

−L2 + 3L − 8 +
π2

6

)

+CF

(
αs

4π

)2

[CFHF + CAHA + TFnfHf ] , (50)

where

HF =
L4

2
− 3L3 +

(
25

2
− π2

6

)

L2 +

(

−45

2
− 3π2

2
+ 24ζ3

)

L +
255

8
+

7π2

2
− 83π4

360
− 30ζ3 ,

HA =
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This result agrees with the corresponding expression given in [21]. The anomalous dimension

of the vector current in SCET is obtained from the coefficient Z(1)
V of the 1/ε pole term via

the relation
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Q2

µ2
+ γV (αs) = 2αs
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∂αs
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Wilson coefficient CV

• 2-loop result:      L=ln(Q2/µ2)

3.3 Matching conditions and anomalous dimensions

To evaluate the resummed hard and jet functions at a common factorization scale µ requires
perturbative expressions for the matching functions CV (Q2, µh) and j̃(L, µi). We extract the
hard coefficient at a scale µh ∼ Q in the first matching step, and the associated jet function
at a scale µi ∼ Q

√
1 − x in the second. In this way, the matching functions are free of large

logarithms and can be reliably computed in fixed-order perturbation theory. We also need
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is simplified greatly by performing these calculations on-shell, in which case all loop graphs
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The form factor is infrared divergent and can be regularized using dimensional regularization.
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the (vanishing) SCET graphs are subtracted from the QCD result, the infrared poles in 1/ε
get transformed into ultraviolet poles. To obtain the matching coefficient we introduce a
renormalization factor ZV , which absorbs these poles. We then compute

CV (Q2, µ) = lim
ε→0

Z−1
V (ε, Q2, µ) Fbare(ε, Q

2) , (49)

where on the right-hand side we must also eliminate the bare coupling constant in favor of the
renormalized coupling αs(µ). At two-loop order, we find (with L = ln(Q2/µ2) and αs = αs(µ))

CV (Q2, µ) = 1+
CF αs

4π

(

−L2 + 3L − 8 +
π2

6

)

+CF

(
αs

4π

)2

[CFHF + CAHA + TFnfHf ] , (50)

where

HF =
L4

2
− 3L3 +

(
25

2
− π2

6

)

L2 +

(

−45

2
− 3π2

2
+ 24ζ3

)

L +
255

8
+

7π2

2
− 83π4

360
− 30ζ3 ,

HA =
11

9
L3 +

(

−233

18
+

π2

3

)

L2 +

(
2545

54
+

11π2

9
− 26ζ3

)

L

− 51157

648
− 337π2

108
+

11π4

45
+

313

9
ζ3 ,

Hf = −4

9
L3 +

38

9
L2 +

(

−418

27
− 4π2

9

)

L +
4085

162
+

23π2

27
+

4

9
ζ3 . (51)

This result agrees with the corresponding expression given in [21]. The anomalous dimension

of the vector current in SCET is obtained from the coefficient Z(1)
V of the 1/ε pole term via

the relation

Γcusp(αs) ln
Q2

µ2
+ γV (αs) = 2αs

∂

∂αs
Z(1)

V (Q2, µ) . (52)

18

3.3 Matching conditions and anomalous dimensions

To evaluate the resummed hard and jet functions at a common factorization scale µ requires
perturbative expressions for the matching functions CV (Q2, µh) and j̃(L, µi). We extract the
hard coefficient at a scale µh ∼ Q in the first matching step, and the associated jet function
at a scale µi ∼ Q

√
1 − x in the second. In this way, the matching functions are free of large

logarithms and can be reliably computed in fixed-order perturbation theory. We also need
perturbative expressions for the anomalous dimensions Γcusp, γV , and γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when the
vector current in full QCD is matched onto an effective current built out of operators in SCET.
To obtain an expression for the Wilson coefficient one must compute, at a given order in αs,
perturbative expressions for the photon vertex function in the two theories. The calculation
is simplified greatly by performing these calculations on-shell, in which case all loop graphs
in the effective theory are scaleless and hence vanish. The bare on-shell vertex function in
QCD (called the on-shell quark form factor) has been studied extensively in the literature.
The form factor is infrared divergent and can be regularized using dimensional regularization.
The bare form factor at two-loop order was calculated long ago [41, 42, 43, 44], and recently
the infrared divergent contributions have even been computed at three-loop order [45]. When
the (vanishing) SCET graphs are subtracted from the QCD result, the infrared poles in 1/ε
get transformed into ultraviolet poles. To obtain the matching coefficient we introduce a
renormalization factor ZV , which absorbs these poles. We then compute

CV (Q2, µ) = lim
ε→0

Z−1
V (ε, Q2, µ) Fbare(ε, Q

2) , (49)

where on the right-hand side we must also eliminate the bare coupling constant in favor of the
renormalized coupling αs(µ). At two-loop order, we find (with L = ln(Q2/µ2) and αs = αs(µ))

CV (Q2, µ) = 1+
CF αs

4π

(

−L2 + 3L − 8 +
π2

6

)

+CF

(
αs

4π

)2

[CFHF + CAHA + TFnfHf ] , (50)

where

HF =
L4

2
− 3L3 +

(
25

2
− π2

6

)

L2 +

(

−45

2
− 3π2

2
+ 24ζ3

)

L +
255

8
+

7π2

2
− 83π4

360
− 30ζ3 ,

HA =
11

9
L3 +

(

−233

18
+

π2

3

)

L2 +

(
2545

54
+

11π2

9
− 26ζ3

)

L

− 51157

648
− 337π2

108
+

11π4

45
+

313

9
ζ3 ,

Hf = −4

9
L3 +

38

9
L2 +

(

−418

27
− 4π2

9

)

L +
4085

162
+

23π2

27
+

4

9
ζ3 . (51)

This result agrees with the corresponding expression given in [21]. The anomalous dimension

of the vector current in SCET is obtained from the coefficient Z(1)
V of the 1/ε pole term via

the relation

Γcusp(αs) ln
Q2

µ2
+ γV (αs) = 2αs

∂

∂αs
Z(1)

V (Q2, µ) . (52)

18

with



• Redefine

• The new hc-fields no longer interact with sc and c.

• Hard-collinear matrix element is jet function:

Decoupling transformation
Tµν = i

∫

d4x eiqx
∑

σ

〈N(p, σ)|T
[

J†
µ(x)Jν(0)

]

|N(p, σ)〉

= |CV (Q2, µ)|2 i

∫

d4x eiq·x〈N(p)|T
{(

ξ̄c̄Wc̄

)

(x−) γµ
⊥

(

W †
hcξhc

)

(x)
(

ξ̄hcWhc

)

(0) γν
⊥

(

W †
c̄ ξc̄

)

(0)
}

|N(p)〉

multipole expansion of Lagrangian interactions between soft-collinear and anti-collinear fields
[27]. Therefore, when matching the current operator onto SCET, one must multipole expand
both the anti-collinear and soft-collinear fields about x−.

The two expressions in (13) are invariant under hard-collinear and anti-collinear gauge
transformations, while under a soft-collinear gauge transformation both composite fields,
W †

hcξhc and W †
c̄ ξc̄, transform into Usc(x−) times themselves. Thus, at tree level the gauge-

invariant matching relation for the current is

(ψ̄γµψ)(x) → (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x) . (15)

Only a single Dirac structure is possible for massless quarks. Beyond tree level the matching
relation at leading power gets generalized to (see the analogous discussions in [13, 29])

(ψ̄γµψ)(x) →
∫

dt C̃V (t, n · q, µ) (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x + tn̄)

= CV (−n · q n̄ · P , µ) (ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x) . (16)

In the first line we have used that n̄ · ∂ derivatives of hard-collinear fields are unsuppressed
in SCET power counting, allowing for arbitrary displacements of these fields along the n̄
light-cone. In the second line, the object P is the hard-collinear momentum operator, and
the Wilson coefficient CV is the Fourier transform of the position-space Wilson coefficient C̃V

appearing in the first line. In the case at hand, the relevant components −n · q ≈ n̄ · P ≈ Q
are fixed by kinematics (see the relations (7)), and so we may write CV (Q2, µ) for simplicity.

2.2 Matching of the hadronic tensor

The next step in the matching procedure is to evaluate the hadronic tensor in the intermediate
effective theory. Inserting the SCET current (16) into (3), we find the leading-power expression

W µν(p, q) → |CV (Q2, µ)|2 i
∫

d4x eiq·x (17)

× 〈N(p)| T{(ξ̄c̄Wc̄)(x−) γµ
⊥(W †

hcξhc)(x)(ξ̄hcWhc)(0) γν
⊥(W †

c̄ ξc̄)(0)} |N(p)〉 .

The interactions of soft-collinear gluons with hard-collinear fields in (12) can be removed by
the field redefinitions [12, 27]

ξhc(x) → Sn(x−) ξ(0)
hc (x) , Aµ

hc(x) → Sn(x−) Aµ(0)
hc (x) S†

n(x−) , (18)

which imply (W †
hcξhc)(x) → Sn(x−) (W (0)†

hc ξ(0)
hc )(x). Here

Sn(x) = P exp
(
ig

∫ 0

−∞
ds n · Asc(x + sn)

)
(19)

is a soft-collinear Wilson line along the n-direction. The redefined hard-collinear fields with
superscripts “(0)” are decoupled from soft-collinear fields and thus interact only among them-
selves. After the field redefinition the hadronic matrix element in (17) factorizes into a vacuum
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(a) (b) (c)

Figure 2: Examples of diagrams involving anti-collinear gluon exchange. The dashed (dot-
ted) lines represent anti-collinear (hard-collinear) quark lines. The wavy lines represent the
electromagnetic currents. In graph (a) the anti-collinear gluon is part of the initial-state (nu-
cleon) jet and the final-state propagator is hard-collinear, as required in the effective theory.
In graphs (b) and (c) the anti-collinear gluon is part of the final-state jet, whose invariant
mass then becomes hard. Graphs (b) and (c) are therefore not part of the effective-theory
representation of the hadronic tensor as x → 1.

matrix element of hard-collinear fields and a nucleon matrix element of anti-collinear and soft-
collinear fields. In the second matching step, we “integrate out” the hard-collinear fields, which
can be done using perturbation theory because the hard-collinear scale is a short-distance scale,
p2

hc ∼ Q2(1 − x) $ Λ2
QCD. Since in a single (hard-)collinear sector SCET is equivalent to full

QCD [13], the vacuum matrix element of hard-collinear fields can be rewritten in terms of the
QCD matrix element [31]

〈0| T{(W (0)†
hc ξ(0)

hc )(x) (ξ̄(0)
hc W (0)

hc )(0)} |0〉 = 〈0| T
[
/n/̄n

4
W †(x) ψ(x) ψ̄(0) W (0)

/̄n/n

4

]

|0〉

=
∫ d4k

(2π)4
e−ik·x /n

2
n̄ · k J (k2, µ) . (20)

The object W (x) denotes a Wilson line analogous to (14) but with gauge fields in full QCD.
Color indices are suppressed; the correlator is proportional to the unit matrix in color space.
We define the jet function through the imaginary part of J as (see e.g. [32])

J(p2, µ) =
1

π
Im

[
iJ (p2, µ)

]
. (21)

The jet function has support for p2 > 0.
At this point it is important to emphasize a subtlety related to the matching of the forward-

scattering amplitude in full QCD onto operator matrix elements in SCET. The anti-collinear
composite fields W †

c̄ ξc̄ and ξ̄c̄Wc̄ in (17) are not allowed to communicate via anti-collinear
particle exchanges, but only through exchanges of soft-collinear partons. The exchange of anti-
collinear particles between the two currents in (3) is kinematically forbidden in the region x →
1, as this would lead to a final-state invariant hadronic mass MX ∼ Q. Since the intermediate
state is hard instead of hard-collinear, diagrams such as those shown in Figure 2(b) and
(c) are not part of the effective-theory representation of the hadronic tensor in the region
x → 1. Such “forbidden” graphs are nonetheless generated (and yield non-vanishing results)
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• Can rewrite jet-function in terms of 
QCD fields

• Known to 2 loops.

Jet function

2 Two-loop calculation of the jet function

The factorization properties of decay rates and cross sections for processes involving hard, soft,

and collinear degrees of freedom become most transparent if an effective field theory is employed

to disentangle the contributions associated with these different momentum regions. Soft-collinear

effective theory (SCET) has been designed to accomplish this task [8, 9, 10, 11]. In the context of

SCET the jet function is defined in terms of the hard-collinear quark propagator [6, 9]

/n

2
n̄ · pJ(p2, µ) =

∫
d4x e−ip·x 〈0 |T

{
Xhc(0)Xhc(x)

}
| 0〉 , (3)

where µ is the renormalization scale, and n and n̄ are two light-like vectors satisfying n · n̄ = 2.
For simplicity we suppress color indices on the quark fields. The propagator is proportional to a

unit matrix in color space. The composite field Xhc(x) = S
†
s(x−)W

†
hc
(x) ξ(x) [11, 12, 13] is the

gauge-invariant (under both soft and hard-collinear gauge transformations) effective-theory field for

a massless quark after a decoupling transformation has been applied, which removes the interactions

of soft gluons with hard-collinear fields in the leading-order SCET Lagrangian [9]. In the absence of

such interactions the hard-collinear Lagrangian is equivalent to the conventional QCD Lagrangian,

and we can rewrite the propagator in terms of standard QCD fields as

/n

2
n̄ · pJ(p2, µ) =

∫
d4x e−ip·x 〈0 |T

{
/n /̄n

4
W†(0)ψ(0)ψ(x)W(x)

/̄n /n

4

}
| 0〉 . (4)

The quark fields are multiplied by Wilson lines

W(x) = P exp

(
ig

∫ 0

−∞
ds n̄ · A(x + sn̄)

)
, (5)

which render the expression (4) gauge invariant. Note that the Wilson lines are absent in the light-

cone gauge n̄ ·A = 0. For this reason the functionJ is sometimes referred to as the quark propagator
in axial gauge. Lorentz invariance dictates that the QCD propagator in the presence of these Wilson

lines contains two Dirac structures proportional to /p and /̄n. The Dirac matrices appearing to the left

and right of the field operators in (4) project out the terms proportional to /p. The jet function J is

the discontinuity of the propagator, i.e.

J(p2, µ) =
1

π
Im
[
iJ(p2, µ)

]
= δ(p2) + O(αs) . (6)

Finally, we calculate the function j from the contour integral

j
(
ln
Q2

µ2
, µ
)
=

∫ Q2

0

dp2 J(p2, µ) = −
1

2π

!

|p2 |=Q2

dp2J(p2, µ) . (7)

Our calculation of the jet function employs the representation (4) of the function J(p2, µ) in
terms of ordinary QCD quark and gluon fields. The relevant two-loop diagrams are shown in Fig-

ure 1. Equally well, one could use the SCET Lagrangian together with (3) to perform the calculation.

In this case diagrams in which a quark emits more than one gluon at the same vertex would also be

present, in addition to the topologies shown in Figure 1. Also, the analysis would be complicated by

the fact that the SCET Feynman rules are more complicated that those of QCD.

2

Figure 1: Two-loop diagrams contributing to the jet function in QCD. Gluons emitted from the

crossed circles originate from the Wilson lines. Not shown are additional diagrams resulting from

mirror images in which the two external points are exchanged. The first diagram is the full fermion

two-point function, not just the one-particle irreducible part.

2.1 Evaluation of the two-loop diagrams

We first discuss the evaluation of the bare quantity jbare(Q
2) and later perform its renormalization.

Let us begin by quoting the result for the one-loop master integral

∫
ddk

(−1)−a−b−c
(
k2 + i0

)a [
(k + p)2 + i0

]b
(n̄ · k)c

= iπ
d
2

(
−p2 − i0

) d
2
−a−b

(n̄ · p)−c J(a, b, c) , (8)

with

J(a, b, c) =
Γ(d

2
− b) Γ(d

2
− a − c) Γ(a + b − d

2
)

Γ(a) Γ(b) Γ(d − a − b − c)
. (9)

At two-loop order, the most general integral we need is (omitting the “+i0” terms for brevity)

∫
ddk

∫
ddl

(−1)−a1−a2−a3−b1−b2−b3−c1−c2
(
k2
)a1 (l2

)a2 [(k − l)2
]a3 [(k + p)2

]b1 [(l + p)2
]b2 [(k + l + p)2

]b3 (n̄ · k)c1 (n̄ · l)c2

= −πd
(
−p2
)d−a1−a2−a3−b1−b2−b3

(n̄ · p)−c1−c2 J(a1, a2, a3, b1, b2, b3, c1, c2) . (10)

We use the same standard reduction techniques as in the two-loop calculation of the soft function [2]

to express all integrals we need for the evaluation of the diagrams in Figure 1 in terms of four master

integrals Mn. Introducing the dimensional regulator ε = 2 − d/2, we obtain

M1 = J(1, 1, 0, 0, 0, 1, 0, 0) =
Γ3(1 − ε) Γ(2ε − 1)
Γ(3 − 3ε)

,

3
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Parton distribution function 

• Remaining matrix element is PDF in the 
end-point

• Factorization theorem

if the SCET Feynman rules used for the matching of the electromagnetic current are naively
applied to the hadronic tensor. We can construct a set of Feynman rules appropriate for the
hadronic tensor by introducing different anti-collinear fields for the “in” and “out” states in
the forward-scattering amplitude, and restricting interactions between the two anti-collinear
sectors to soft-collinear exchange. These effective-theory Feynman rules produce graphs such
as that in Figure 2(a), but not those in Figure 2(b) and (c). For simplicity of notation, we
will suppress the “in” and “out” labels on the anti-collinear fields, but one must make this
distinction when evaluating the hadronic tensor in the effective theory.

After integrating out the hard-collinear fields, the resulting nucleon matrix element in the
low-energy effective theory can be reduced to

〈N(p)| (ξ̄c̄Wc̄)(x−) Sn(x−) γµ
⊥

/n

2
γν
⊥ S†

n(0) (W †
c̄ ξc̄)(0) |N(p)〉

= −〈N(p)| (ξ̄c̄Wc̄)(x−) [x−, 0]sc (gµν
⊥ − iεµν

⊥ γ5)
/n

2
(W †

c̄ ξc̄)(0) |N(p)〉 , (22)

where [x−, 0]sc = Sn(x−) S†
n(0) is a straight Wilson line of soft-collinear gluon fields along the

n light-cone. In the second line we have defined the objects gµν
⊥ = gµν − 1

2 (nµn̄ν + n̄µnν)
and εµν

⊥ = 1
2 εµναβ n̄αnβ, and also used that /̄n ξc̄ = 0. The anti-symmetric structure vanishes

after averaging over the nucleon spin. The appearance of the symmetric structure gµν
⊥ implies

the Callan-Gross relation Q2 W2 = 4x2 W1 at leading power and to all orders in perturbation
theory. Hereafter, we thus focus on the structure function W1.

Consider now the standard definition of the quark distribution function in QCD [33],

φns
q (ξ, µ) =

1

2π

∫ ∞

−∞
dt e−iξtn·p 〈N(p)| ψ̄(tn) [tn, 0]

/n

2
ψ(0) |N(p)〉 , (23)

where [tn, 0] is a straight Wilson line of gauge fields in full QCD, and the superscript “ns”
indicates the flavor non-singlet component of the distribution function. In the Breit frame,
where the proton moves along the n̄-direction, ψ and ψ̄ can be considered anti-collinear fields.
For generic values of ξ these fields carry only a portion of the proton’s longitudinal momentum.
The remaining portion (1− ξ) n · p is still large and can be shared between other anti-collinear
partons exchanged between the two points 0 and tn. A different picture is called for in the limit
ξ → 1, where the anti-collinear valence quarks ψ and ψ̄ carry almost all of the longitudinal
momentum [3]. In this case, the residual momentum component (1 − ξ) n · p is small, and
the remaining partons are soft-collinear. Each valence quark is described by an anti-collinear
jet propagating through the soft-collinear cloud made up of the remaining partons. The two
anti-collinear jets communicate through soft-collinear gluon exchange only.

The distinct roles played by the valence and remaining partons as ξ → 1 make it appro-
priate to introduce an effective field-theory description for the parton distribution function, in
which it is matched onto an operator involving anti-collinear and soft-collinear fields in SCET.
The most general, gauge-invariant form the relation (23) can be matched onto in the ξ → 1
limit reads
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1
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∫ ∞

−∞
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/n

2
(W †

c̄ ξc̄)(0) |N(p)〉 . (24)
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It is understood that the anti-collinear fields located at the points 0 and tn interact only via
soft-collinear gluon exchange. Both (24) and the QCD matrix element (23) depend on the
single invariant p2 = m2, so there is no non-trivial hard matching coefficient. The matrix
element (24) is precisely the object we encountered in (22). We can use this correspondence
along with some simple algebra to find

W1 = |CV (Q2, µ)|2 i
∫

d(n · k) n̄ · qJ (q2 + n · k n̄ · q, µ) φns
q

(n · k
n · p

, µ
)
. (25)

The structure function F ns
2 (x, Q2) equals

∑
q e2

q x 1
π Im W1, where the eq are quark electric

charges. Inserting the definition of the jet function (21), and recalling that q2 = −Q2 and
n · p n̄ · q = Q2/x + power corrections, we obtain the final result for the factorization formula

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µ)|2 Q2

∫ 1

x
dξ J

(
Q2 ξ − x

x
, µ

)
φns

q (ξ, µ) . (26)

This formula is valid to all orders in perturbation theory and at leading power in (1− x) and
Λ2

QCD/M2
X . The argument of the jet function takes values between 0 and M2

X , where the total
jet invariant mass was given in (8). The equivalent form (1) is obtained by substituting ξ =
x/z. At tree-level, this formula evaluates to the familiar parton-model expression F ns

2 (x, Q2) =
∑

q e2
q xφns

q (x).
Relation (26) is the standard form of the QCD factorization formula for the DIS structure

function in the limit x → 1 [1, 2, 3], which we have derived here using SCET. We hope our
derivation helps resolve some of the disagreements in the literature. Soft-collinear messenger
modes obviously play a crucial role in the derivation, as the parton distribution function
at large ξ is defined in terms of these fields. The proper effective-theory description of the
parton distribution function thus requires two distinct non-perturbative modes. This element
is missing from [17, 20], where it was argued that only one non-perturbative mode is needed,
either because the soft graphs vanish in the Breit frame calculation, or because the effective-
theory formulation in the target rest frame involves only one non-perturbative mode from the
beginning. Although we disagree with these statements (the second of which would violate
reparameterization invariance in the effective theory), our explicit one-loop results agree with
those derived in these papers. This is because our findings imply that parton evolution in
the endpoint region can be described simply by taking the x → 1 limit of the Altarelli-Parisi
splitting functions, which is effectively what was done in the calculations of [17]. Our explicit
one-loop results also agree with those in [18], where the power counting ε = 1 − x ∼ λ =
ΛQCD/Q was adopted. While this counting is possible and natural in view of the hierarchy
λ2 $ ε $ 1, it does not imply that the soft-collinear scale m2(1 − x) depends on the scale
Q, and the presence of this scale does not translate into non-perturbative Q-dependence
in the parton distribution function, as was suggested in [18]. Finally, we have shown that
the soft-collinear contributions are precisely such that they can be absorbed into the parton
distribution function. We therefore do not confirm the claims of soft contributions outside the
parton distribution function made in [19]. The same conclusion as ours was reached in [21, 22],
where it was argued that the infrared divergences due to collinear and soft emissions can be
absorbed in the standard QCD parton distribution function, although [21] did not discuss
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how to obtain this result in the effective theory. In [22] it was claimed that there is a double-
counting problem in SCET, which must be remedied by making certain soft subtractions from
the collinear matrix element. We have shown here that there is no such problem. Double
counting occurs only if one fails to notice that collinear emissions such as those shown in
Figure 2(b) and (c) must not be included in the effective-theory calculation near the endpoint.
Similar to [17], the discussion in [22] fails to distinguish the virtualities of hard-collinear and
anti-collinear modes, and it overlooks the fact that the smallest scale in the problem is not
Q2(1 − x)2 but m2(1 − x).

In the next subsection, we will emphasize the importance of soft-collinear Wilson loops in
determining the RG properties of the effective theory.

2.3 Decoupling transformation and cusp singularities

An important step in the derivation of the factorization formula (26) was the identification of
the parton distribution function for ξ → 1 with the SCET matrix element on the right-hand
side of (24). We can simplify this relation further by decoupling the soft-collinear gluons from
the anti-collinear fields with the help of the field redefinitions

ξc̄(y) → Sn̄(y+) ξ(0)
c̄ (y) , Aµ

c̄ (y) → Sn̄(y+) Aµ(0)
c̄ (y) S†

n̄(y+) , (27)

where the soft-collinear Wilson line Sn̄ is defined in analogy with (19), but with n replaced
by n̄. Above, y is a generic argument of a term in the SCET Lagrangian. The multipole
expansion of the soft-collinear fields about y+ must be done everywhere except at the location
of the current, where x scales as a hard-collinear (not anti-collinear) quantity, see above. At
this one point, we have instead

ξc̄(x−) → Sn̄(x−) ξ(0)
c̄ (x−) , Aµ

c̄ (x−) → Sn̄(x−) Aµ(0)
c̄ (x−) S†

n̄(x−) . (28)

It follows that

φns
q (ξ, µ)|ξ→1 =

1

2π

∫ ∞

−∞
dt e−iξtn·p 〈N(p)| (ξ̄(0)

c̄ W (0)
c̄ )(tn)

/n

2
WC(t) (W (0)†

c̄ ξ(0)
c̄ )(0) |N(p)〉 , (29)

where
WC(t) = 〈0|S†

n̄(tn) [tn, 0]sc Sn̄(0) |0〉 = 〈0|S†
n̄(tn) Sn(tn) S†

n(0) Sn̄(0) |0〉 (30)
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A subtlety

• The two anti-collinear fields can only 
interact via sc-exchange, not directly!

c c c

(a) (b) (c)

Figure 2: Examples of diagrams involving anti-collinear gluon exchange. The dashed (dot-
ted) lines represent anti-collinear (hard-collinear) quark lines. The wavy lines represent the
electromagnetic currents. In graph (a) the anti-collinear gluon is part of the initial-state (nu-
cleon) jet and the final-state propagator is hard-collinear, as required in the effective theory.
In graphs (b) and (c) the anti-collinear gluon is part of the final-state jet, whose invariant
mass then becomes hard. Graphs (b) and (c) are therefore not part of the effective-theory
representation of the hadronic tensor as x → 1.

matrix element of hard-collinear fields and a nucleon matrix element of anti-collinear and soft-
collinear fields. In the second matching step, we “integrate out” the hard-collinear fields, which
can be done using perturbation theory because the hard-collinear scale is a short-distance scale,
p2

hc ∼ Q2(1 − x) $ Λ2
QCD. Since in a single (hard-)collinear sector SCET is equivalent to full

QCD [13], the vacuum matrix element of hard-collinear fields can be rewritten in terms of the
QCD matrix element [31]

〈0| T{(W (0)†
hc ξ(0)

hc )(x) (ξ̄(0)
hc W (0)

hc )(0)} |0〉 = 〈0| T
[
/n/̄n

4
W †(x) ψ(x) ψ̄(0) W (0)

/̄n/n

4

]

|0〉

=
∫ d4k

(2π)4
e−ik·x /n

2
n̄ · k J (k2, µ) . (20)

The object W (x) denotes a Wilson line analogous to (14) but with gauge fields in full QCD.
Color indices are suppressed; the correlator is proportional to the unit matrix in color space.
We define the jet function through the imaginary part of J as (see e.g. [32])

J(p2, µ) =
1

π
Im

[
iJ (p2, µ)

]
. (21)

The jet function has support for p2 > 0.
At this point it is important to emphasize a subtlety related to the matching of the forward-

scattering amplitude in full QCD onto operator matrix elements in SCET. The anti-collinear
composite fields W †

c̄ ξc̄ and ξ̄c̄Wc̄ in (17) are not allowed to communicate via anti-collinear
particle exchanges, but only through exchanges of soft-collinear partons. The exchange of anti-
collinear particles between the two currents in (3) is kinematically forbidden in the region x →
1, as this would lead to a final-state invariant hadronic mass MX ∼ Q. Since the intermediate
state is hard instead of hard-collinear, diagrams such as those shown in Figure 2(b) and
(c) are not part of the effective-theory representation of the hadronic tensor in the region
x → 1. Such “forbidden” graphs are nonetheless generated (and yield non-vanishing results)
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anti-collinear + soft-collinear
PDF for ξ→1

hard-collinear
propagator in LC gauge

Factorization summary

• Any choice of the scale µ will lead to 
large perturbative logarithms.

• Solve RG for individual parts, evolve 
to common scale.

It is understood that the anti-collinear fields located at the points 0 and tn interact only via
soft-collinear gluon exchange. Both (24) and the QCD matrix element (23) depend on the
single invariant p2 = m2, so there is no non-trivial hard matching coefficient. The matrix
element (24) is precisely the object we encountered in (22). We can use this correspondence
along with some simple algebra to find

W1 = |CV (Q2, µ)|2 i
∫

d(n · k) n̄ · qJ (q2 + n · k n̄ · q, µ) φns
q

(n · k
n · p

, µ
)
. (25)

The structure function F ns
2 (x, Q2) equals

∑
q e2

q x 1
π Im W1, where the eq are quark electric

charges. Inserting the definition of the jet function (21), and recalling that q2 = −Q2 and
n · p n̄ · q = Q2/x + power corrections, we obtain the final result for the factorization formula

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µ)|2 Q2

∫ 1

x
dξ J

(
Q2 ξ − x

x
, µ

)
φns

q (ξ, µ) . (26)

This formula is valid to all orders in perturbation theory and at leading power in (1− x) and
Λ2

QCD/M2
X . The argument of the jet function takes values between 0 and M2

X , where the total
jet invariant mass was given in (8). The equivalent form (1) is obtained by substituting ξ =
x/z. At tree-level, this formula evaluates to the familiar parton-model expression F ns

2 (x, Q2) =
∑

q e2
q xφns

q (x).
Relation (26) is the standard form of the QCD factorization formula for the DIS structure

function in the limit x → 1 [1, 2, 3], which we have derived here using SCET. We hope our
derivation helps resolve some of the disagreements in the literature. Soft-collinear messenger
modes obviously play a crucial role in the derivation, as the parton distribution function
at large ξ is defined in terms of these fields. The proper effective-theory description of the
parton distribution function thus requires two distinct non-perturbative modes. This element
is missing from [17, 20], where it was argued that only one non-perturbative mode is needed,
either because the soft graphs vanish in the Breit frame calculation, or because the effective-
theory formulation in the target rest frame involves only one non-perturbative mode from the
beginning. Although we disagree with these statements (the second of which would violate
reparameterization invariance in the effective theory), our explicit one-loop results agree with
those derived in these papers. This is because our findings imply that parton evolution in
the endpoint region can be described simply by taking the x → 1 limit of the Altarelli-Parisi
splitting functions, which is effectively what was done in the calculations of [17]. Our explicit
one-loop results also agree with those in [18], where the power counting ε = 1 − x ∼ λ =
ΛQCD/Q was adopted. While this counting is possible and natural in view of the hierarchy
λ2 $ ε $ 1, it does not imply that the soft-collinear scale m2(1 − x) depends on the scale
Q, and the presence of this scale does not translate into non-perturbative Q-dependence
in the parton distribution function, as was suggested in [18]. Finally, we have shown that
the soft-collinear contributions are precisely such that they can be absorbed into the parton
distribution function. We therefore do not confirm the claims of soft contributions outside the
parton distribution function made in [19]. The same conclusion as ours was reached in [21, 22],
where it was argued that the infrared divergences due to collinear and soft emissions can be
absorbed in the standard QCD parton distribution function, although [21] did not discuss
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Resummation



 Traditional method: moment space

• Convolution in momentum space → 
product in moment space

• x→1  corresponds to N→∞. Perturbation 
theory contains αsn Logn(N) and αsn Log2n(N)

• Split:

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Resummation in moment space

• Aq, Bq determined by matching to fixed  
order result.

•

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
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(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
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∑
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e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
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Q2
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) e−γEη
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(ξ − x)1−η ,

where
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Q2

µ2
h
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exp
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2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (6)

This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.
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of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z
(7)

×

[∫ (1−z)Q2

µ2

f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)

)
]

.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Mellin Inversion

• Can only be done numerically

• Problem with Fortran PDF’s.
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• RG equation for CV 

• Solution

Resummation by RG evolution: 1. hard part

3 Renormalization-group evolution and resummation

The factorization formula for the DIS structure function derived in the previous section con-
tains physics associated with different momentum scales factorized into a hard coefficient
function CV , a jet function J , and non-perturbative parton distribution functions φns

q . These
three objects depend on a scale µ at which the corresponding effective theory operators are
renormalized. The hard matching coefficient and the jet function need to be calculated us-
ing perturbative QCD. These calculations can only be done at fixed order when the scale is
chosen appropriately so as to avoid large logarithms: the function CV should be computed
at a hard scale µh ∼ Q, while the jet function should be computed at an intermediate scale
µi ∼ MX ∼ Q

√
1 − x. The results of these calculations must then be evolved to the common

scale µ in (21) by solving renormalization-group (RG) evolution equations. [Say that these
are easier to derive in EFT than in Sterman’s approach? Also say what one should do
about the scale of the PDFs, and what is usually done in the literature!]

3.1 Evolution of the hard function

We begin by discussing the evolution of the hard matching coefficient CV in (13). At leading
power there is a single gauge-invariant SCET operator the QCD current can match onto, and
hence there is no operator mixing. The exact evolution equation takes the form

d

d lnµ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (29)

where Γcusp is the universal cusp anomalous dimension of Wilson loops with light-like segments
[19, 20]. The appearance of the cusp logarithm and its coefficient in (29) can be traced back
to the presence of the closed Wilson loop S†

n̄(x−) Sn(x−) in the matching relation (28) for the
current operator after the decoupling transformation has been applied [15]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution effects.

The exact solution to the evolution equation (29) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (30)

where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
, (31)

(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (32)
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d lnµ
CV (Q2, µ) =

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) , (29)
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[19, 20]. The appearance of the cusp logarithm and its coefficient in (29) can be traced back
to the presence of the closed Wilson loop S†

n̄(x−) Sn(x−) in the matching relation (28) for the
current operator after the decoupling transformation has been applied [15]. This term in the
evolution equation is associated with Sudakov double logarithms. The remaining term, γV ,
accounts for single-logarithmic evolution effects.

The exact solution to the evolution equation (29) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

](
Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (30)

where µh ∼ Q is a hard matching scale, at which the value of the Wilson coefficient CV is
calculated using fixed-order perturbation theory. The Sudakov exponent S and the exponents
an are the solutions to the partial differential equations

d

d lnµ
S(ν, µ) = −Γcusp

(
αs(µ)

)
ln

µ

ν
,

d

d ln µ
aΓ(ν, µ) = −Γcusp

(
αs(µ)

)
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(and similarly for aγV ) with initial conditions S(ν, ν) = aΓ(ν, ν) = aγV (ν, ν) = 0 at µ = ν.
These equations can be integrated by writing d/d lnµ = β(αs) d/dαs, where β(αs) = dαs/d lnµ
is the QCD β function. This yields the exact solutions [21]

S(ν, µ) = −
αs(µ)∫
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Γcusp(α)
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αs(µ)∫

αs(ν)
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Γcusp(α)
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Resummation by RG evolution: 2. jet function

• Associated jet-function j is Laplace 
transform of J(p2,µi).

form factor is infrared divergent and must be regular-
ized. When the SCET graphs are subtracted from the
QCD result, the infrared poles in 1/ε get cancelled and
replaced by ultraviolet poles. To obtain the matching co-
efficient we introduce a renormalization factor ZV , which
absorbs these poles. At one-loop order this gives [6]

CV (Q2, µ) = 1 +
CF αs

4π

(
−L2 + 3L − 8 +

π2

6

)
,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation

dCV (Q2, µ)

d lnµ
=

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) ,

(1)

where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [13], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [12] it
can be calculated at three-loop order. The result is pre-
sented in [1].

The jet function J is defined in terms of the disconti-
nuity of a vacuum correlator of two quark fields, made
gauge invariant by the introduction of Wilson lines. It
obeys the integro-differential evolution equation [14]

dJ(p2, µ)

d ln µ
= −

[
2Γcusp(αs) ln

p2

µ2
+ 2γJ(αs)

]
J(p2, µ)

− 2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [14] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RG EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents an are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [15]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)

= −
[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ(αs)

]
j̃
(

ln
Q2

µ2
, µ

)
,

which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]

× j̃(∂η, µi)
e−γEη

Γ(η)

1

p2

(
p2

µ2
i

)η

, (5)

where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results
of this Letter. It relates J to the associated jet function
j̃ evaluated at the scale µi, where it can be computed
using fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [14].
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~

where η = 2aΓ(µi, µ). This solution is valid as long as η > 0, which implies that µ < µi.
Equation (38) is completely analogous to the solution for the evolution equation of the B-
meson shape function found in [18, 21] using a technique developed in [23].

Using the connection between J and j̃ implied by Laplace transformation, it is possible to
derive an even more elegant expression for the jet function J(p2, µ), which does not involve
an integral and which is valid for both µ > µi and µ < µi. The result relates J to the
associated jet function j̃ evaluated at the scale µi, where it can be computed using fixed-order
perturbation theory. We obtain [Refer to the “wonderful formula” in B → Xsγ decay?]

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]
j̃(∂η, µi)

[
1

p2

(
p2

µ2
i

)η]

∗

e−γEη

Γ(η)
, (39)

where ∂η denotes a derivative with respect to the quantity η, and the star distribution is
defined as [24]

∫ Q2

0

dp2

[
1

p2

(
p2

µ2

)η]

∗
f(p2) =

∫ Q2

0

dp2 f(p2) − f(0)

p2

(
p2

µ2

)η

+
f(0)

η

(
Q2

µ2

)η

, (40)

where f(p2) is a smooth test function. The subtraction term involving f(0) is only required
if η < 0. In the form given above formula (39) holds as long as η > −1, which is sufficient for
all practical purposes. For even smaller values of η, it would be necessary to perform further
subtractions in (40) by using the double-star distributions introduced in [25].

3.3 Matching conditions and anomalous dimensions

In order to evaluate the solutions (30) and (39) of the RG equations we need as matching
conditions the value CV (Q2, µh) of the hard function at the scale µh ∼ Q, and the result for
the associated jet function j̃(L, µi) at the intermediate scale µi ∼ Q

√
1 − x. These functions

are free of large logarithms and hence can be reliably computed using fixed-order perturbation
theory. We also need perturbative expressions for the anomalous dimensions Γcusp, γV , and
γJ .

The hard matching coefficient CV (Q2, µ) is extracted in the first matching step, when the
vector current in full QCD is matched onto an effective current built out of operators in SCET.
To obtain an expression for the Wilson coefficient one must compute, at a given order in αs,
perturbative expressions for the photon vertex function in the two theories. The calculation
is simplified greatly by performing these calculations on-shell, in which case all loop graphs
in the effective theory are scale-less and hence vanish. The bare on-shell vertex function in
QCD (called the on-shell quark form factor) has been studied extensively in the literature.
The form factor is infrared divergent and can be regularized using dimensional regularization.
The bare form factor at two-loop order was calculated long ago [26, 27, 28, 29, 30], [I believe
the first calculation is incorrect! I havn’t checked the other papers except for the one
by Gehrman et al.!] and recently the infra-red divergent contributions have even been
computed at three-loop order [31]. [Also, in a heroic effort, Manohar recently succeeded
to obtain the expression valid at one-loop order [8]!] When the (vanishing) SCET graphs
are subtracted from the QCD result, the infrared poles in 1/ε get transformed into ultraviolet
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result is [15]

Γ(∆) =
G2Fα

32π4
|VtbV∗ts|

2m3b m
2
b(µh) |Hγ(µh)|

2U1(µh, µi)U2(µi, µ0)

(
∆

µ0

)η
(1)

×
{
j̃
(
ln
mb∆

µ2
i

+ ∂η, µi
)
s̃
(
ln
∆

µ0
+ ∂η, µ0

) e−γEη

Γ(1 + η)

[
1 −
η(1 − η)
6

µ2π
∆2
+ . . .

]
+ O
(
∆

mb

)}
.

Here mb is the b-quark pole mass, and mb(µ) denotes the running mass defined in the MS scheme.

The only hadronic parameter entering at this order is the quantity µ2π related to the b-quark kinetic

energy inside the Bmeson. The ellipses represent subleading corrections of order (ΛQCD/∆)
3, which

are unknown. The pole mass and µ2π must be eliminated in terms of related parameters defined in

a physical subtraction scheme, such as the shape-function scheme [16, 17]. The scales µh ∼ mb,

µi ∼
√
mb∆, and µ0 ∼ ∆ are hard, intermediate, and soft matching scales. The hard function Hγ,

the jet function j̃, and the soft function s̃ encode the contributions to the rate associated with these

scales. Note that all information about the short-distance quantum fluctuations associated with the

weak-interaction vertices in the effective weak Hamiltonian are contained in Hγ. Logarithms of

ratios of the various scales are resummed into the evolution functions U1 (evolution from the hard to

the intermediate scale) and U2 (evolution from the intermediate to the soft scale), as well as into the

quantity

η = 2

∫ µi

µ0

dµ

µ
Γcusp[αs(µ)] , (2)

which is given in terms of an integral over the universal cusp anomalous dimension of Wilson loops

with light-like segments [18]. The result (1) is formally independent of the choices of the match-

ing scales. In practice, a residual scale dependence remains because one is forced to truncate the

perturbative expansions of the various objects in the formula for the decay rate. Reducing the scale

uncertainty associated with the lowest short-distance scale, ∆ ≈ 1GeV, is the goal of the present
work.

The soft function s̃ in (1) is related to the original B-meson shape function S (ω, µ) [11] through

a series of steps. Starting from a perturbative calculation of the shape function in the parton model

with on-shell b-quark states, we first define

s
(
ln
Ω

µ
, µ
)
≡
∫ Ω

0

dω S parton(ω, µ) . (3)

ForΩ ( ΛQCD, this parton-model expression gives the leading term in a systematic operator-product
expansion of the integral over the true shape function [15]. The first power correction is linked to

the leading term by reparameterization invariance [19, 20] and gives rise to the term proportional to

µ2π/∆
2 in (1). While the perturbative expression for S parton involves singular distributions [16], the

function s has a double-logarithmic expansion of the form

s(L, µ) = 1 +

∞∑

n=1

(
αs(µ)

4π

)n (
c
(n)

0
+ c

(n)

1
L + · · · + c(n)

2n−1L
2n−1 + c

(n)

2n
L2n
)
. (4)

The function s̃ is then obtained by the replacement rule [15]

s̃(L, µ) ≡ s(L, µ)
∣∣∣∣
Ln→In(L)

, (5)

2

order and beyond [9–11]. The form factor is infrared di-
vergent and must be regularized. When the SCET graphs
are subtracted from the QCD result, the infrared poles
in 1/ε get replaced by ultraviolet poles. To obtain the
matching coefficient we introduce a renormalization fac-
tor ZV , which absorbs these poles. At one-loop order
this gives [6]

CV (Q2, µ) = 1 +
CF αs

4π

(
−L2 + 3L − 8 +

π2

6

)
,

where L = ln(Q2/µ2) and αs = αs(µ). The two-loop
expression for CV can be found in [1]. The scale depen-
dence of the Wilson coefficient is governed by the evolu-
tion equation

dCV (Q2, µ)

d lnµ
=

[
Γcusp(αs) ln

Q2

µ2
+ γV (αs)

]
CV (Q2, µ) ,

(1)

where Γcusp is the universal cusp anomalous dimension
of Wilson loops with light-like segments [12], which is
associated with the appearance of Sudakov double loga-
rithms. The quantity γV accounts for single-logarithmic
evolution effects. The anomalous dimension can be ob-
tained from the coefficient of the 1/ε pole term in the
renormalization factor ZV . Using the results of [11] it
can be calculated at three-loop order [1].

The jet function J is defined in terms of the disconti-
nuity of a vacuum correlator of two quark fields, made
gauge invariant by the introduction of Wilson lines. It
obeys the integro-differential evolution equation [13]

dJ(p2, µ)

d ln µ
= −

[
2Γcusp(αs) ln

p2

µ2
+ 2γJ(αs)

]
J(p2, µ)

− 2Γcusp(αs)

∫ p2

0
dp′2

J(p′2, µ) − J(p2, µ)

p2 − p′2
.

We encounter again the cusp anomalous dimension, and
in addition a new function γJ , which has been calculated
in [13] at two-loop order, and whose three-loop coefficient
is determined in [1].

III. SOLUTIONS OF THE RENORMALIZATION

GROUP EQUATIONS

The exact solution to the evolution equation (1) is

CV (Q2, µ) = exp
[
2S(µh, µ) − aγV (µh, µ)

]

×
(

Q2

µ2
h

)−aΓ(µh,µ)

CV (Q2, µh) , (2)

where µh ∼ Q is a hard matching scale, at which the
value of the coefficient CV is calculated using fixed-order
perturbation theory. The Sudakov exponent S and the
exponents aγ are given by

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
,

aΓ(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (3)

and similarly for aγV , where β(αs) = dαs/d lnµ is
the β-function. The explicit perturbative expansions of
these expressions valid at next-to-next-to-leading order
(NNLO) in renormalization-group (RG) improved per-
turbation theory are given in [1].

An important object in the derivation of the solution
to the evolution equation for J is the associated jet func-
tion j̃, which has originally been defined in terms of an
integral over the jet function followed by a certain re-
placement rule [14]. More elegantly, it can be obtained
by the Laplace transformation

j̃
(

ln
Q2

µ2
, µ

)
=

∫
∞

0
dp2 e−sp2

J(p2, µ) ,

where s = 1/(eγEQ2). The inverse transformation is

J(p2, µ) =
1

2πi

∫ c+i∞

c−i∞

ds esp2

j̃
(

ln
1

eγEs µ2
, µ

)
. (4)

Using the evolution equation for the jet function we find
that the associated jet function obeys

d

d lnµ
j̃
(

ln
Q2

µ2
, µ

)

= −
[
2Γcusp(αs) ln

Q2

µ2
+ 2γJ(αs)

]
j̃
(

ln
Q2

µ2
, µ

)
,

which is analogous to the evolution equation (1) for the
hard function. Inserting the solution to this equation into
the inverse transformation (4) we obtain

J(p2, µ) = exp
[
−4S(µi, µ) + 2aγJ (µi, µ)

]

× j̃(∂η, µi)
e−γEη

Γ(η)

1

p2

(
p2

µ2
i

)η

, (5)

where η = 2aΓ(µi, µ), and ∂η denotes a derivative with
respect to this quantity. The above form of the result is
valid as long as η > 0 (i.e., µ < µi). For negative η the
singularity at p2 = 0 must be regularized using a star
distribution [1]. Relation (5) is one of the main results of
this Letter. It relates J to the associated jet function j̃
evaluated at a scale µi, where it can be computed using
fixed-order perturbation theory. At one-loop order

j̃(L, µ) = 1 +
CF αs

4π

(
2L2 − 3L + 7 −

2π2

3

)
,

where in (5) the argument L is replaced by the deriva-
tive operator ∂η. The two-loop expression for j̃ can be
extracted from [13].
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Resummation by RG evolution: 3. PDF near the end-point

• Equation (and its solution) can be 
obtained from

• Can obtain 3-loop γJ using

3.5 Parton evolution near the endpoint

The easiest way to derive the evolution equation for the parton distribution function in the
limit x → 1 is to use that the factorized expression (26) for the structure function F2 must be
independent of the arbitrary renormalization scale µ, and to combine this information with
the known scale dependences of the hard and jet functions, given in (36) and (40). This yields

d

d lnµ
φns

q (ξ, µ) = 2γφ(αs) φns
q (ξ, µ) + 2Γcusp(αs)

∫ 1

ξ
dξ′

φns
q (ξ′, µ)

[ξ′ − ξ]∗

=
∫ 1

ξ

dz

z
P (endpt)

q←q (z) φns
q

(ξ

z
, µ

)
, (64)

where

P (endpt)
q←q (z) =

2Γcusp(αs)

(1 − z)+
+ 2γφ(αs) δ(1 − z) (65)

is the z → 1 limit of the Altarelli-Parisi splitting function Pq←q(z), which is known from
direct calculation at three-loop order [46]. The asymptotic form of the splitting function
near the endpoint given above holds to all orders in perturbation theory, up to corrections of
order (1 − z). Recall that the anomalous dimension γφ was defined as the difference of the
anomalous dimensions γJ and γV of the jet function and SCET current, see (59). Relation
(65) thus provides a check of our two-loop results for these anomalous dimensions, and it
furthermore allows us to deduce the value of the three-loop coefficient γJ

2 given in relation
(97) of the Appendix.

The exact solution to the evolution equation (64) can be found in analogy with (45). It
reads

φns
q (ξ, µf) = exp

[
2aγφ(µf , µ0)

] e−γEσ

Γ(σ)

∫ 1

ξ
dξ′

φns
q (ξ′, µ0)

(ξ′ − ξ)1−σ
, (66)

where this time σ = 2aΓ(µf , µ0), and µ0 denotes the scale at which the initial condition for
φns

q is given. For the hadronic parameters N and b governing the asymptotic behavior of the
parton distribution function in (61), this relation implies

b(µf) = b(µ0) + 2aΓ(µf , µ0) ,

N (µf) = N (µ0) exp
[
2aγφ(µf , µ0)

] eγE b(µ0) Γ(1 + b(µ0))

eγE b(µf ) Γ(1 + b(µf))
. (67)

These evolution equations ensure that the µf dependence on the two sides of relation (63) is
indeed the same. The first result is particularly simple and interesting. Since aΓ(µf , µ0) > 0
for µf > µ0, it follows that the coefficient b(µ) increases with µ, a fact incompatible with the
naive counting rule result b = 3 [52, 53]. In other words, such a counting rule could possibly
hold only at a specific renormalization point.

4 Connection with the standard approach

The conventional approach to threshold resummation in DIS proceeds via moment space and
inverse Mellin transformations [1, 2]. The purpose of this section is twofold; first, to show that
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d

d lnµ
F2(x, Q2) = 0

γ
J

= γ
φ

+ γ
V
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Result for F2

• Evolve CV and J from µh and µi to scale 
µf , plug into factorization theorem

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η , (6)

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as

φns
q (ξ, µf )

∣∣
ξ→1

= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑

q e2
q xφns

q (x, µf )
= |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×(1 − x)η j̃
(

ln
Q2(1 − x)

µ2
i

+ ∂η, µi

)

×
e−γEη Γ(1 + b(µf))

Γ(1 + b(µf ) + η)
. (7)

The exact all-order results (6) and (7) are independent
of the scales µh and µi, at which the matching coefficient
CV and the associated jet function j̃ are calculated. The
answers simplify further if we choose the “natural” val-
ues µh = Q and µi = Q

√
1 − x (for fixed x). In practi-

cal calculations the residual dependence on these scales
introduced by the truncation of the perturbative expan-
sions of the various objects can be used as an estimator
of yet unknown higher-order corrections.

Above we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formulae are simpler than corresponding
expressions in the literature (see e.g. [15]) in that they
do not require a Mellin inversion and in that the de-
pendence on x and Q is explicit. The right-hand sides
of (6) and (7) can be evaluated at any desired order in
resummed perturbation theory. Using currently avail-
able results, it is possible to include terms at NNLO

[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1−x) $ Λ2

QCD/Q2, since only then the interme-

diate scale µi ∼ Q
√

1 − x is a short-distance scale. While
the theoretical description thus breaks down very close
to the endpoint, we note that weighted integrals of the
structure function over an interval x0 ≤ x ≤ 1 can be
calculated as long as Q

√
1 − x0 is in the short-distance

domain.
It is instructive to compare our result (7) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
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where the moments of φns
q (ξ, µ) are defined in analogy

with those of F ns
2 (x, Q2). For large values of N the inte-

gral is dominated by the endpoint region (1− x) ∼ 1/N .
The short-distance coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [15] for the
most up-to-date discussion)
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The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (7) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and
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where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
the integrals over the functions Aq and Bq in (8) run
over the Landau pole of the running coupling αs(µ),
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sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2
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X . When combining the results (2)
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The exact all-order results (6) and (7) are independent
of the scales µh and µi, at which the matching coefficient
CV and the associated jet function j̃ are calculated. The
answers simplify further if we choose the “natural” val-
ues µh = Q and µi = Q

√
1 − x (for fixed x). In practi-

cal calculations the residual dependence on these scales
introduced by the truncation of the perturbative expan-
sions of the various objects can be used as an estimator
of yet unknown higher-order corrections.

Above we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formulae are simpler than corresponding
expressions in the literature (see e.g. [15]) in that they
do not require a Mellin inversion and in that the de-
pendence on x and Q is explicit. The right-hand sides
of (6) and (7) can be evaluated at any desired order in
resummed perturbation theory. Using currently avail-
able results, it is possible to include terms at NNLO
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the theoretical description thus breaks down very close
to the endpoint, we note that weighted integrals of the
structure function over an interval x0 ≤ x ≤ 1 can be
calculated as long as Q
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domain.
It is instructive to compare our result (7) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines
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q (ξ, µ) are defined in analogy

with those of F ns
2 (x, Q2). For large values of N the inte-

gral is dominated by the endpoint region (1− x) ∼ 1/N .
The short-distance coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [15] for the
most up-to-date discussion)
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The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (7) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and
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where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
the integrals over the functions Aq and Bq in (8) run
over the Landau pole of the running coupling αs(µ),
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• If we assume φq(x,μf) ~ (1-x)b(μf) :

• Resummed result obtained after plugging 
in fixed order results for coefficient CV,  
jet-function and anom. dimensions.

Result
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and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation
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×
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,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as
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∣∣
ξ→1
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[
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,

where b(µf ) > 0. This leads to the final expression
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This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-
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√
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scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
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can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
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conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-
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coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
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]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)
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.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
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)
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where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Difference to traditional approach

• Simple analytic result in momentum space
• No Landau pole ambiguities. No coupling  

constant below scales μh, μi and μf.

• Freedom to choose scales μh, μi and μf

• Obtain fixed order for μh=μi=μf. Trivial matching 
to fixed order result for generic x.

• Set appropriate scales after integrating

•  Avoids large spurious power corrections 
discussed by Catani et al. hep-ph/9604351

• Estimate uncertainties with scale variation



Result for F2ns(x)/φq(x)

• Default scales: μh2=Q2 and μi2=Q2(1-x)
• Bands obtained by varying these scales a factor of two up 

and down.
• Matching scales are fixed in traditional approach. 
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Comparison with fixed order, μf =Q

• LO (=NLL), NLO, NNLO
• Dashed: fixed order. Solid: resummed.
• Large K-factors. 
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Figure 5: Comparison between fixed-order (dashed) and resummed results (solid) for the K
factor. The green curves are the LO result, red NLO, black NNLO. For the resummed result,
we set µh = Q, µi = MX , µf = Q, and b(µf) = 4. The fixed-order result is obtained by setting
all scales equal to µf .

leading logarithmic (LL) approximation is listed only for completeness, as it neglects terms
that are parametrically much larger than 1.

In Figure ??, we compare the fixed-order calculation of the K factor with the resummed
result for Q = 5GeV and Q = 30GeV. For the resummed result we use the default choice of

scales µh = Q, µi = MX = Q
√

1−x
x and take the asymptotic form of the parton distribution

(??) with b(µf) = 4 in both cases. The fixed-order results can be obtained from our resummed
expression (??) by simply setting µh = µi = µf . Following common practice we choose µf = Q
for the factorization scale. In this case the quantity η < 0, and because of the factor (1−x

x )η in
(??) the resummed results diverge as x approaches 1. The figure illustrates that higher-order
corrections become important as x → 1, and that fixed-order perturbation theory is no longer
adequate in this limit. The magnitude of the K factor can be reduced by adopting a lower
choice for the factorization scale, which is more in line with the philosophy of an effective
field-theory approach. For example, we may consider taking µf ≈ MX(x = 0.9) ≈ 0.32 Q,
corresponding to a typical hadronic invariant mass in the endpoint region. The corresponding
results are shown in Figure ??. We observe that with such a “smart choice” of the factorization
scale the K factor takes more moderate values, and also that the results of the resummation
are less significant.

In Figure ??, we show the scale dependence of the result obtained by varying the hard and
intermediate scales by a factor of 2 about their default values. The figure shows a dramatic
reduction in scale uncertainty when going from LO to NNLO. It also suggests that varying
the two matching scales individually by a factor of 2 may overestimate the perturbative un-
certainty, because the higher-order results lie near the center of the large band obtained by
varying the renormalization scales in the low-order ones. A variation of the scales by a factor

22



Comparison with fixed order, low μf 

• LO (=NLL), NLO, NNLO
• Dashed: fixed order. Solid: resummed.
• Fixed order with µ=µf fairly close to resummed result!
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Figure 6: Same as Figure 5, but with a lower choice of the factorization scale. Specifically, we
take µf = 1.5GeV for Q = 5GeV (left), and µf = 10GeV for Q = 30GeV (right).
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Figure 7: Scale variation of the K factor at Q = 30GeV. The light-gray band is obtained
by varying MX/2 < µi < 2MX , while the dark-gray band arises from varying the hard scale
Q/2 < µh < 2Q. We set µf = 30GeV and b(µf ) = 4.

23

µf =1.5 GeV µf =10 GeV



Comparison with moment space result

• Dashed: Mellin inverted moment space results. Solid: 
momentum space results.

• Only small numerical differences (different scale 
choice, 1/N corrections in moment space).

• Faster convergence of momentum space results.
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Figure 9: Comparison between Mellin-inverted moment space results (dashed) and results
obtained in directly in x-space (solid). The green curves are the LO result, red NLO. The
black lines are NNLO results and are visually indistinguishable from the NLO curves for
Q = 30GeV. We set µh = µf = Q, and b(µf ) = 4. For the intermediate scale, we choose

µi = MX in momentum space and µi = Q/
√

N̄ in moment space.

c smaller than the value of N at which the pole occurs. Even with this prescription, the
numerical integral is not well behaved in the limit x → 1, since the damping of the integrand
becomes weaker and weaker as x approaches the endpoint. In Figure 9 we compare the results
for the x-space structure function obtained through numerical Mellin inversion with those
obtained directly in momentum space (62). One source of numerical differences arises because
the relation (72) is only approximate,4 so that the solution to the RG equation for JN(Q2, µ)
receives corrections which are suppressed as 1/N , while our momentum-space solution (46)
is exact. Another is that the default choice of the intermediate scale µi is different in the
two approaches. The numerical differences are noticeable for smaller values of Q, but become
negligible at Q = 30GeV.

In the effective-theory result for the moments, the Landau pole in the inverse Mellin trans-
formation can be avoided by performing the inversion to x-space with the appropriate scale
choice for momentum space, µi ≈ Q

√
1 − x, instead of µi = Q/

√
N̄ . The freedom to choose

the scales as appropriate for the quantity under consideration is an important advantage of
our approach. The Landau-pole ambiguity in the Mellin inversion is not the only problem that
arises from the fact that the scales cannot be varied in the standard resummation formalism.
An additional difficulty was pointed out in [5]. To illustrate it, let us consider the structure
function at the leading logarithmic level, even though this is not a consistent approximation
in RG-improved perturbation theory. Our result (62) then reduces to

K(x, Q2, µf) = exp [4S(µh, µi) + 2aΓ(µi, µf) ln(1 − x)] , (87)

4The exact form of the RG equation obeyed by the jet-function moments can be found in [31].

30



Connection with standard approach

• Can compare EFT expression for 
moments with standard results. The 
two agree provided that

• fulfilled with two-result from explicit 
calculation of J(p2).

IV. MOMENTUM-SPACE RESUMMATION

We are now ready to write down a resummed expres-
sion for the structure function F ns

2 (x, Q2) valid to all
orders in perturbation theory and at leading power in
(1 − x) and Λ2

QCD/M2
X . When combining the results (2)

and (5) the Sudakov exponents can be simplified. Intro-
ducing the short-hand notation aγφ = aγJ −aγV , we find
after a straightforward calculation

F ns
2 (x, Q2) =

∑

q

e2
q |CV (Q2, µh)|2 U(Q, µh, µi, µf )

×j̃
(

ln
Q2

µ2
i

+ ∂η, µi

) e−γEη

Γ(η)

∫ 1

x

dξ
φns

q (ξ, µf )

(ξ − x)1−η ,

where

U(Q, µh, µi, µf ) = exp [4S(µh, µi) − 2aγV (µh, µi)]

×
(

Q2

µ2
h

)−2aΓ(µh,µi)

exp
[
2aγφ(µi, µf )

]
,

and as before η = 2aΓ(µi, µf ). The remaining integral
can be performed noting that, on general grounds, the
behavior of the parton distribution function near the end-
point can be parameterized as
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= N(µf ) (1 − ξ)b(µf )
[
1 + O(1 − ξ)

]
,

where b(µf ) > 0. This leads to the final expression

F ns
2 (x, Q2)∑
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= |CV (Q2, µh)|2 U(Q, µh, µi, µf )
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Γ(1 + b(µf ) + η)
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This exact all-order result is independent of the scales
µh and µi, at which the matching coefficient CV and the
associated jet function j̃ are calculated. The answer sim-
plifies further if we choose the “natural” values µh = Q
and µi = Q

√
1 − x (for fixed x). In practical calculations

the residual dependence on the matching scales intro-
duced by the truncation of the perturbative expansions
of the various objects can be used as an estimator of yet
unknown higher-order corrections.

In (6) we have accomplished the resummation of
threshold logarithms for F2 directly in momentum space.
The resulting formula is much simpler than correspond-
ing expressions in the literature (see e.g. [16]), which re-
quire complicated integrations. The fact that the final
answer is a convolution (rather than a product) of a hard-
scattering kernel with the parton distribution function is
reflected via a non-trivial dependence on the hadronic
parameter b describing the large-ξ behavior of φns

q . The
right-hand side of (6) can be evaluated at any desired

order in resummed perturbation theory. Using currently
available results, it is possible to include terms at NNLO
[1], which is equivalent to the so-called next-to-next-to-
next-to-leading double-logarithmic (N3LL) approxima-
tion. The resummation is under perturbative control as
long as (1 − x) $ Λ2

QCD/Q2, since only then the inter-

mediate matching scale µi ∼ Q
√

1 − x is a short-distance
scale. While the theoretical description thus breaks down
very close to the endpoint, we note that weighted inte-
grals of the structure function over an interval x0 ≤ x ≤ 1
can be calculated starting from (6) as long as Q

√
1 − x0

is in the short-distance domain.
It is instructive to compare our result (6) with the

conventional approach to threshold resummation in DIS,
which proceeds via moment space [2,3]. One defines

F ns
2,N (Q2) =

∫ 1

0
dxxN−1F ns

2 (x, Q2)

= CN (Q2, µf )
∑

q

e2
q φns

q,N (µf ) ,

where φns
q,N are moments of the parton distribution func-

tion. For large values of N the integral is dominated by
the endpoint region (1 − x) ∼ 1/N . The short-distance
coefficient CN is decomposed as

CN (Q2, µf ) = g0(Q
2, µf ) exp

[
GN (Q2, µf )

]
,

where the prefactor g0 collects all N -independent terms,
and the exponent is written in the form (see [16] for the
most up-to-date discussion)

GN (Q2, µf ) =
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0
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zN−1 − 1

1 − z
(7)
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[∫ (1−z)Q2
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f

dk2

k2
Aq(αs(k)) + Bq

(
αs(Q

√
1 − z)
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.

The resummation for the momentum-space structure
function F2(x, Q2) itself is obtained from that for the mo-
ments F2,N (Q2) by an inverse Mellin transformation. It
is possible to show (see [1] for details) that the outcome of
this procedure is equivalent, at any finite order in the per-
turbative expansion, to the result (6) derived from effec-
tive field theory, provided we identify Aq(αs) = Γcusp(αs)
and

(
1 +

π2

12
∇2 + . . .

)
Bq(αs) = γJ(αs) + ∇ ln j̃(0, µ)

−
(

π2

12
∇−

ζ3

3
∇2 + . . .

)
Γcusp(αs) ,

where ∇ = d/d lnµ2. It follows from this relation that
the quantities Bq and γJ agree at first order in αs (as
observed in [6]), but they differ starting from two-loop
order.

There are a few unpleasant features of the conventional
approach which are worth pointing out. First, note that
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Momentum space?

• Past controversy about performing 
resummations in momentum space. 
Claims that

1. exponentiation is incomplete
2. momentum conservation is violated
3. there are large ambiguities, not related 

to Landau pole singularities.
 

• 3. are not present in our formalism. Not 
sure what 1. and 2. mean.

Catani, Mangano, Nason, Trentadue ‘96



Integral over structure function at LL

• LL, expand exponent in 

• With scale choice

• Choose scales after integration!

where we have approximated 1−x
x ≈ 1 − x. From (63), we see that we have to choose µh ∼ Q

to make the double logarithms in the perturbative expansion of the hard matching coefficient
CV (Q2, µ) small. Similarly, to avoid the appearance of large logarithms in the associated jet

function j̃(ln
M2

X

µ2
i

, µ), the choice µi ∼ MX is mandatory. Let us now look at the structure

function integrated over the endpoint region

Fns
2 (x, Q2) =

∫ 1

1−x
dy F ns

2 (y, Q2) . (89)

In this case, the appropriate choice of the intermediate scale for integral Fns
2 (x, Q2) is µi ∼

Q
√

1 − x, as can be checked by explicitly performing the integral over (63). If one instead
chooses the scale µi to avoid logarithms on the level of the integrand, then the integral (89)
becomes singular. To see the problem, we set µf = µh = Q, µi ≈ Q

√
1 − y and, for illustration

purposes, approximate the Sudakov factor by expanding it to leading order around fixed
coupling αs(Q), as was done in [5]. The integral (89) then becomes

Fns
2 (x, Q2) =

∫ 1

1−x
dy

∑

q

e2
q y φns

q (y, Q) exp

[

−a ln2 µ2
i

µ2
h

+ 2a ln
µ2

i

µ2
f

ln(1 − y)

]

=
∫ 1

1−x
dy

∑

q

e2
q y φns

q (y, µf) exp
[
a ln2(1 − y)

]
, (90)

with a = Γ0
αs(Q)

8π . Because the exponential factor grows faster than any power as y → 1, this
integral diverges. Its expansion in a is an asymptotic series with factorially growing terms.
As was shown in [5] the ambiguity associated with the non-integrable singularity for y → 1 is
of order

e−1/4a ∼
(ΛQCD

Q

) β0

4CF ≈
(ΛQCD

Q

)1.4
(91)

for nf = 5. In [5] it was shown that the above divergence does not occur if the Sudakov resum-
mation is performed in moment space and the inverse transformation is performed exactly,
without dropping subleading logarithms ln(1 − x). From this, the authors concluded that
the appropriate place to perform resummations is moment space and that leading logarithmic
resummations in x-space are problematic. Our analysis shows that it is simply a bad choice
of scale that produces the problem of the spurious power correction: the usual moment-space
formalism produces logarithms ln2 N in the Sudakov exponent, which translates into ln2(1−x)
at leading logarithmic accuracy, which in turn causes the problem in (90). However, the proper
way to perform the calculation is to keep the matching scales arbitrary and choose them such
that the final result of a given calculation does not contain large logarithms. This avoids
the above problem as well as the occurrence of Landau-pole ambiguities in inverse Mellin
transforms.

We hope that the above discussion helps to overcome the misconception that Mellin mo-
ment space is the “correct place” to perform the threshold resummation, and that resummation
in x-space leads to inconsistent results. Quite to the contrary, the final analytical formulae we
obtain in momentum space are simpler than those derived in moment space, they are free of
spurious, unphysical power ambiguities and, as Figure 9 shows, the perturbative expansion in
x-space exhibits a better apparent convergence.
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Nonintegrable singularity!



Summary

• Traditionally, resummation for hard processes is 
performed in moment space.
• Landau poles (in Sudakov exponent and Mellin inversion)
• Mellin inversion only numerically

• Solving RG equations in SCET, we have obtained 
resummed expressions directly in momentum 
space.
• Clear scale separation. No Landau pole ambiguities.
• Simple analytic expressions.
• Trivial connection with fixed order expressions. 

• Same technology should be applicable to many 
other processes.
• Threshold resummation for DY and Higgs production 

under way.


